集合应用:LinkedHashMap与LRUcache
LRU缓存介绍
我们平时总会有一个电话本记录所有朋友的电话,但是,如果有朋友经常联系,那些朋友的电话号码不用翻电话本我们也能记住,但是,如果长时间没有联系了,要再次联系那位朋友的时候,我们又不得不求助电话本,但是,通过电话本查找还是很费时间的。但是,我们大脑能够记住的东西是一定的,我们只能记住自己最熟悉的,而长时间不熟悉的自然就忘记了。
其实,计算机也用到了同样的一个概念,我们用缓存来存放以前读取的数据,而不是直接丢掉,这样,再次读取的时候,可以直接在缓存里面取,而不用再重新查找一遍,这样系统的反应能力会有很大提高。但是,当我们读取的个数特别大的时候,我们不可能把所有已经读取的数据都放在缓存里,毕竟内存大小是一定的,我们一般把最近常读取的放在缓存里(相当于我们把最近联系的朋友的姓名和电话放在大脑里一样)。
LRU缓存利用了这样的一种思想。LRU是Least Recently Used 的缩写,翻译过来就是“最近最少使用”,也就是说,LRU缓存把最近最少使用的数据移除,让给最新读取的数据。而往往最常读取的,也是读取次数最多的,所以,利用LRU缓存,我们能够提高系统的performance
实现
要实现LRU缓存,我们首先要用到一个类LinkedHashMap。
用这个类有两大好处:一是它本身已经实现了按照访问顺序的存储,也就是说,最近读取的会放在最前面,最最不常读取的会放在最后(当然,它也可以实现按照插入顺序存储)。第二,LinkedHashMap本身有一个方法用于判断是否需要移除最不常读取的数,但是,原始方法默认不需要移除(这是,LinkedHashMap相当于一个linkedlist),所以,我们需要override这样一个方法,使得当缓存里存放的数据个数超过规定个数后,就把最不常用的移除掉。关于LinkedHashMap中已经有详细的介绍。
代码如下:(可直接复制,也可以通过LRUcache-Java下载)1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127import java.util.LinkedHashMap;
import java.util.Collection;
import java.util.Map;
import java.util.ArrayList;
/**
* An LRU cache, based on <code>LinkedHashMap</code>.
*
* <p>
* This cache has a fixed maximum number of elements (<code>cacheSize</code>).
* If the cache is full and another entry is added, the LRU (least recently
* used) entry is dropped.
*
* <p>
* This class is thread-safe. All methods of this class are synchronized.
*
* <p>
* Author: Christian d'Heureuse, Inventec Informatik AG, Zurich, Switzerland<br>
* Multi-licensed: EPL / LGPL / GPL / AL / BSD.
*/
public class LRUCache<K, V> {
private static final float hashTableLoadFactor = 0.75f;
private LinkedHashMap<K, V> map;
private int cacheSize;
/**
* Creates a new LRU cache. 在该方法中,new LinkedHashMap<K,V>(hashTableCapacity,
* hashTableLoadFactor, true)中,true代表使用访问顺序
*
* @param cacheSize
* the maximum number of entries that will be kept in this cache.
*/
public LRUCache(int cacheSize) {
this.cacheSize = cacheSize;
int hashTableCapacity = (int) Math
.ceil(cacheSize / hashTableLoadFactor) + 1;
map = new LinkedHashMap<K, V>(hashTableCapacity, hashTableLoadFactor,
true) {
// (an anonymous inner class)
private static final long serialVersionUID = 1;
@Override
protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {
return size() > LRUCache.this.cacheSize;
}
};
}
/**
* Retrieves an entry from the cache.<br>
* The retrieved entry becomes the MRU (most recently used) entry.
*
* @param key
* the key whose associated value is to be returned.
* @return the value associated to this key, or null if no value with this
* key exists in the cache.
*/
public synchronized V get(K key) {
return map.get(key);
}
/**
* Adds an entry to this cache. The new entry becomes the MRU (most recently
* used) entry. If an entry with the specified key already exists in the
* cache, it is replaced by the new entry. If the cache is full, the LRU
* (least recently used) entry is removed from the cache.
*
* @param key
* the key with which the specified value is to be associated.
* @param value
* a value to be associated with the specified key.
*/
public synchronized void put(K key, V value) {
map.put(key, value);
}
/**
* Clears the cache.
*/
public synchronized void clear() {
map.clear();
}
/**
* Returns the number of used entries in the cache.
*
* @return the number of entries currently in the cache.
*/
public synchronized int usedEntries() {
return map.size();
}
/**
* Returns a <code>Collection</code> that contains a copy of all cache
* entries.
*
* @return a <code>Collection</code> with a copy of the cache content.
*/
public synchronized Collection<Map.Entry<K, V>> getAll() {
return new ArrayList<Map.Entry<K, V>>(map.entrySet());
}
// Test routine for the LRUCache class.
public static void main(String[] args) {
LRUCache<String, String> c = new LRUCache<String, String>(3);
c.put("1", "one"); // 1
c.put("2", "two"); // 2 1
c.put("3", "three"); // 3 2 1
c.put("4", "four"); // 4 3 2
if (c.get("2") == null)
throw new Error(); // 2 4 3
c.put("5", "five"); // 5 2 4
c.put("4", "second four"); // 4 5 2
// Verify cache content.
if (c.usedEntries() != 3)
throw new Error();
if (!c.get("4").equals("second four"))
throw new Error();
if (!c.get("5").equals("five"))
throw new Error();
if (!c.get("2").equals("two"))
throw new Error();
// List cache content.
for (Map.Entry<String, String> e : c.getAll())
System.out.println(e.getKey() + " : " + e.getValue());
}
}